Exercise 46

A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level?

Solution

Draw a schematic of the rider's path at a certain time.

The aim is to find $d y / d t$ when $y=6$. Use a trigonometric function to relate the angle θ with convenient sides of the triangle.

$$
\sin \theta=\frac{y}{10}
$$

Solve for y.

$$
y=10 \sin \theta
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(y) & =\frac{d}{d t}(10 \sin \theta) \\
\frac{d y}{d t} & =(10 \cos \theta) \cdot \frac{d \theta}{d t} \\
& =10\left(\frac{x}{10}\right) \cdot\left(\frac{2 \pi}{2}\right) \\
& =x \cdot \pi \\
& =\left(\pm \sqrt{100-y^{2}}\right) \cdot \pi
\end{aligned}
$$

Since we want to know the rate at which the rider is rising (as opposed to falling), we choose the plus sign.

$$
\frac{d y}{d t}=\pi \sqrt{100-y^{2}}
$$

Therefore, when the rider is 16 feet above the ground, the rate that he's rising with respect to time is

$$
\left.\frac{d y}{d t}\right|_{y=6}=\pi \sqrt{100-(6)^{2}}=8 \pi \frac{\mathrm{~m}}{\min } \approx 25.1327 \frac{\mathrm{~m}}{\min } .
$$

